Проектирование системы визуализации тренажерного комплекса на основе компетентностного подхода
исследование выполнено в рамках гранта РФФИ № 19-013-00567.
DOI:
https://doi.org/10.18413/2712-7451-2020-39-3-378-390Ключевые слова:
цифровые образовательные технологии, инструментально-педагогические средства, деятельностная педагогика, профессионально-важные компетенции, качество образованияАннотация
Высокий уровень готовности к выполнению трудовых функций в условиях чрезвычайных ситуаций становится более востребованным на рынке труда. Цифровизация всех сфер деятельности обуславливает необходимость в профессиональной подготовке использовать инструментально-педагогические средства в виде тренажерных комплексов. Установлена слабая проработанность концептуальных подходов к проектированию тренажерных комплексов на основе закономерностей педагогики и психологии. Цель исследования – разработка методологии
создания системы визуализации тренажерных комплексов, обеспечивающей эффективное и результативное формирование требуемых компетенций. Использованы компетентностный, синергетический, контекстный и деятельностный методологические подходы. Обоснована структура профессионально важных компетенций работников опасных производств, обеспечивающая их деятельность в условиях стабильно работающего предприятия и при аварийных ситуациях; сформулированы критерии оптимальности проектирования структуры системы визуализации тренажерного комплекса; представлен алгоритм, позволяющий формализовать процесс соотношения существующих средств и технологий визуализации и задач разрабатываемого тренажерного комплекса. Сформулированные подходы к созданию цифровых образовательных средств способствуют решению научной проблемы обеспечения условий повышения качества подготовки специалистов к деятельности в сложных наукоемких
производствах.
Библиографические ссылки
Авиационные тренажеры. АО ЦНТУ «Динамика». URL: http://www.dinamika-avia.ru/ (дата обращения: 20.04.2020).
Багдасарова Ю.А. 2013. Использование виртуальных тренажерных комплексов при формировании профессионально-экологической компетентности у будущих специалистов в области трубопроводного транспорта. Вестник Самарского государственного технического университета. Серия: Психолого-педагогические науки, 1 (19): 11–19.
Булаев Н.И., Козлов В.Н., Оводенко А.А., Рудской А.И. 2009. Системные ресурсы качества высшего образования России и Европы. СПб., Изд-во Политехн. ун-та, 460 с.
Варданян Ю.В., Воробьева О.М. 2017. Профессиональная психологическая подготовка как фактор психологической безопасности. Вестник Челябинского государственного педагогического университета, 7: 127–132.
Вербицкий А.А. 1991. Активное обучение в высшей школе: контекстный подход. М., Высшая школа, 204 с.
Лаптев В.Н., Василенко И.А. 2008. К алгоритму усвоения знаний, умений и навыков, на базе информационных технологий. Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета, 43 (9): 16–32.
Наумкин Н.И., Шекшаева Н.Н., Квитко С.И., Ломаткина М.В., Купряшкин В.Ф., Коровина И.В. 2019. Разработка педагогической модели многоуровневой и поэтапной подготовки студентов к инновационной инженерной деятельности. Интеграция образования, 23 (4): 568–586. DOI: 10.15507/1991-9468.097.023.201904.568-586.
Невзоров Р.В. 2014. Тренажерная подготовка как объект педагогического анализа в рамках авиационной педагогики. Ученые записки университета им. П.Ф. Лесгафта, 2 (108): 131–136. DOI: 10.5930/issn.1994-4683.2014.02.108.p131-136
Молоткова Н.В., Попов А.И. 2019. Организация подготовки инженерных кадров к инновационной деятельности. Alma-mater (Вестник высшей школы), 4: 9–14. DOI: 10.20339/AM.04-19.009.
Молоткова Н.В., Ракитина Е.А., Попов А.И. 2018. Механизм использования цифровой образовательной среды в инженерном образовании. Вопросы современной науки и практики. Университет им. В.И. Вернадского, 2 (68): 163–172.
Староверова Н.А. 2012. Актуальность развития навыков в сфере управления качеством у будущих специалистов химической промышленности. Вестник Казанского технологического университета, 24: 207–209.
Стрелков С.В., Клыгач А.С., Варзин С.А., Пискун О.Е., Иванов В.М. 2015. Реалистичная визуализация для тренажера по проведению операций открытого типа. В кн.: Здоровье – основа человеческого потенциала: проблемы и пути их решения. Труды Всероссийской научно-практической конференции с международным участием: в 2-х частях, Санкт-Петербург, 19–21 ноября 2015, 10 (2). Под ред. С.А. Варзина. Санкт-Петербург, РПГУ им. А.И. Герцена, СПбГУ, СПбПУ: 735–739.
Федотова Н.И. 2016. Психологические условия формирования профессиональных знаний, навыков, умений. Научные труды Московского гуманитарного университета, 6: 24–30. DOI: 10.17805/trudy.2016.6.3
Asghar, I., Egaji, O.A., Dando, L., Griffiths, M., Jenkins, P. 2019. A virtual reality based gas assessment application for training gas engineers. In: ICICM 2019. The 9-th International Conference on Information Communication and Management, Prague, Czech Republic, 23-26 August 2019. Ed. A. Balinsky. New York, Association for Computing Machinery: 57–61. DOI: 10.1145/3357419.3357443.
Clifford R.M.S., Jung S., Hoermann S., Billinghurst M., Lindeman R.W. 2019. Creating a Stressful Decision Making Environment for Aerial Firefighter Training in Virtual Reality. In: IEEE Conference on Virtual Reality and 3D User Interfaces (VR). Publ. IEEE: 181-189. DOI: 10.1109/VR.2019.8797889.
Cooper N., Milella F., Cant I., Pinto C., White M. and Meyer G. 2016. Augmented cues facilitate learning transfer from virtual to real environments. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct). Publ. Merida: 194-198. DOI: 10.1109/ISMARAdjunct. 2016.0075.
Gąsiorek K., Odachowska E., Matysiak A., Pędzierska M. 2020. Virtual Reality Technologies in the Training of Professional Drivers. Comparison of the 2D and 3D Simulation Application. In: Research Methods and Solutions to Current Transport Problems. ISCT21 2019. Advances in Intelligent Systems and Computing. Eds. M. Siergiejczyk, K. Krzykowska.Vol 1032. Springer, Cham: 133–142. DOI: 10.1007/978-3-030-27687-4_14.
Strojny P., Strojny A. 2014. Kwestionariusz immersji – polska adaptacja iempiryczna weryfikacja narzędzia. Homo Ludens, 1 (6): 171–186.
Risi D., Palmisano S. 2019. Effects of postural stability, active control, exposure duration and repeated exposures on HMD induced cybersickness. Displays, 60: 9–17. DOI: 10.1016/j.displa.2019.08.003.
Просмотров аннотации: 456
Поделиться
Опубликован
Как цитировать
Выпуск
Раздел
Copyright (c) 2020 Алексей Евгеньевич Архипов , Андрей Иванович Попов, Артём Дмитриевич Обухов
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.