Formation of Computational Linguistics Terminology

Authors

  • Olga N. Polshchykova Belgorod National Research University

DOI:

https://doi.org/10.52575/2712-7451-2022-41-3-590-607

Keywords:

computational linguistics, terminology, periods of development, diachronic analysis, automatic natural language processing

Abstract

An important role in the study of terminology is played by the study of its formation in the diachronic aspect. Despite the rapid development of the field of computational linguistics, there are practically no works on the analysis of the processes of evolution of the corresponding terminology. The purpose of this study is to study the processes of formation and formation of the terminology of computational linguistics, to identify the main periods of its development. The study was conducted on the basis of the method of diachronic analysis. To study the processes of formation and development of the terminology under study, factual material was used in the form of texts on the subject of computational linguistics, published in monographs, reference books, educational literature, scientific periodicals and collections, online electronic resources. As a result of the study, three main periods of the formation of the terminology of computational linguistics were identified. The first period is characterized by the formation of the terminology under study under the influence of linguistic terms. In the second period, the terminology of computational linguistics was formed under the influence of mathematical statistics terms. In the third period, the replenishment of the studied terminology is carried out by neural network terms. The results of the study showed that the terminology of computational linguistics is in a state of continuous dynamics. The obtained results contribute to the study of the problems of scientific and technical terminology, substantiation of trends in its development.

Author Biography

Olga N. Polshchykova, Belgorod National Research University

PhD in Philology, Associate Professor of the Department of Russian Language, Professional Speech and Intercultural Communication, Belgorod National Research University,

Belgorod, Russia

References

Автоматическая обработка текста. 2003. URL: http://www.aot.ru/history.html (дата обращения: 10.02.2022).

Богданова О. 2021. От Декарта до Google Translate. Удивительная история машинного перевода. Teletype, 18 апреля 2021 года. URL: https://teletype.in/@iambocca/machine-translation (дата обращения: 10.02.2022).

История машинного перевода: от гипотез Лейбница и Декарта – до мобильных приложений и облачных сервисов. ПРОМТ, 21 марта 2019 года. URL: https://www.promt.ru/press/blog/istoriya-mashinnogo-perevoda-ot-gipotez-leybnitsa-i-dekarta-do-mobilnykh-prilozheniy-i-oblachnykh-se/ (дата обращения: 10.02.2022).

Крылов В. 2019. Что такое эмбеддинги и как они помогают искусственному интеллекту понять мир людей. Наука и жизнь, 17 апреля 2019 года. URL: https://www.nkj.ru/open/36052/ (дата обращения: 10.02.2022).

Многоцелевой лингвистический процессор ЭТАП-3. 2022. Российская Академия наук. Институт проблем передачи информации им. А.А. Харкевича. URL: http://iitp.ru/ru/science/works/452.htm (дата обращения: 10.02.2022).

Национальный корпус русского языка. 2003-2022. URL: https://ruscorpora.ru/new/index.html (дата обращения: 10.02.2022).

Нейросеть GPT-3 от OpenAI пишет стихи, музыку и код. Почему она пока далека от настоящего ИИ, но способна поменять мир. Компьютерная лингвистика, анализ текстов, корпусная лингвистика, 8 августа 2020 года. URL: https://ai-news.ru/2020/08/nejroset_gpt_3_ot_openai_ pishet_stihi_muzyku_i_kod_pochemu_ona_poka_dalek.html (дата обращения: 10.02.2022).

Синтаксически размеченный корпус русского языка: информация для пользователей. 2003-2022. Национальный корпус русского языка. URL: https://ruscorpora.ru/new/instruction-syntax.html (дата обращения: 10.02.2022).

Хмельков И. 2015. Мешок слов и сентимент-анализ на R. Хабр, 7 апреля 2015 года. URL: https://habr.com/ru/post/255143/ (дата обращения: 10.02.2022).

Systran translate. URL: https://www.systran.net/en/translate/ (accessed: February 10, 2022).

Агузумцян Р.В., Великанова (Герасимова) А.С., Польщиков К.А., Игитян Е.В., Лихошерстов Р.В. 2021. О применении интеллектуальных технологий обработки естественного языка и средств виртуальной реальности для поддержки принятия решений при подборе исполнителей проектов. Экономика. Информатика, 48(2): 392–404. DOI: 10.52575/2687-0932-2021-48-2-392-404

Апресян Ю.Д., Богуславский И.М., Иомдин Л.Л. 1992. Лингвистический процессор для сложных информационных систем. Под ред. Л.П. Крысина. М., Наука, 256 с.

Батура Т.В. 2016. Математическая лингвистика и автоматическая обработка текстов на естественном языке. Новосибирск, РИЦ Новосибирский национальный исследовательский государственный университет, 166 с.

Богуславский И.М., Иомдин Л.Л., Крейдлин Л.Г., Фрид Н.Е., Сагалова И.Л., Сизов В.Г. 2000. Модуль универсального сетевого языка в составе системы ЭТАП-3[1]. В кн.: Сборник 2000. URL: https://www.dialog-21.ru/digest/2000/articles/boguslavsk_i_m/ (дата обращения: 10.02.2022).

Блехман М.С. 2012. Краткая историческая справка о зарождении и успешном развитии компьютерной лингвистики в СССР. Петербургская библиотечная школа, 2(39): 4–6. URL: http://www.rasl.ru/e_editions/pbsh_2012-2-39.pdf (дата обращения: 10.02.2022).

Большакова Е.И., Воронцов К.В., Ефремова Н.Э., Клышинский Э.С., Лукашевич Н.В., Сапин А.С. 2017. Автоматическая обработка текстов на естественном языке и анализ данных. М., Изд-во НИУ ВШЭ, 269 с.

Дроздова К.А. 2015. Машинный перевод: история, классификация, методы. В кн.: Филологические науки в России и за рубежом. Материалы III международной научной конференции, Санкт-Петербург, 20–23 июля 2015 г. СПб., Свое издательство: 139–141. URL: https://moluch.ru/conf/phil/archive/138/8497/ (дата обращения: 08.04.2022).

Мельчук И.А. 1999. Опыт теории лингвистических моделей «Смысл ⇔ Текст». М., Школа «Языки русской культуры», 346 с.

Митренина О.В. 2017. Назад, в 47-й: к 70-летию машинного перевода как научного направления. Вестник Новосибирского государственного университета. Лингвистика и межкультурная коммуникация, 15 (3): 5–12. DOI: 10.25205/1818-7935-2017-15-3-5-12

Митренина О.В. 2019. Нейронные сети и компьютерная обработка языка. Journal of Applied Linguistics and Lexicography, 1 (2): 399–408.

Леонтьева Н.Н. 2006. Автоматическое понимание текстов: системы, модели, ресурсы. М., Академия, 304 с.

Прикладная и компьютерная лингвистика. 2016. Под ред. И.С. Николаева, О.В. Митрениной, Т.М. Ландо. М., Ленанд, 320 с.

Раренко М.Б. 2021. Машинный перевод: от перевода «по правилам» к нейронному переводу. Социальные и гуманитарные науки. Отечественная и зарубежная литература. Серия: Языкознание. Реферативный журнал, 3: 70–79. DOI: 10.31249/ling/2021.03.05

Сокирко А.В., Толдова С.Ю. 2005. Сравнение эффективности двух методик снятия лексической и морфологической неоднозначности для русского языка (скрытая модель Маркова и синтаксический анализатор именных групп). В кн.: Интернет-математика 2005: автоматическая обработка веб-данных. М.: 80-94. URL: http://hdl.handle.net/10995/1391 (дата обращения: 10.02.2022).

Тихонов А.С. 2017. Компьютерная лингвистика и межпредметные связи в преподавании математических и лингвистических дисциплин. В кн.: Математика, информатика, компьютерные науки, моделирование, образование. Сборник научных трудов научно-практической конференции МИКМО-2017 и Таврической научной конференции студентов и молодых специалистов по математике и информатике, Симферополь, 10–14 апреля 2017 г. Под ред. В.А. Лукьяненко. Симферополь, ИП Корниенко: 222–231.

Тьюринг А.М. 1960. Может ли машина мыслить? (С приложением статьи Дж. фон Неймана Общая и логическая теория автоматов.) Пер. с англ. Ю.В. Данилова. Под ред. С.А. Яновской. М., Государственное издательство физико-математической литературы, 67 с. URL: http://www.etheroneph.com/files/can_the_machine_think.pdf (дата обращения: 10.02.2022). (Turing A.M. 1950. Computing Machinery and Intelligence ((Neumann J. 1951. The General and Logical Theory of Automata. In: Cerebral Mechanisms In Behavior. The Hixon Symposium. Ed. L.A. Jeffress. New York—London: 2070–2098.) Mind, New Series, Vol. 59, No. 236: 433-460)

Хобсон Л., Ханнес Х., Коул Х. 2020. Обработка естественного языка в действии. Пер. с нем. И. Пальти, Сергей Черникова. СПб., Питер, 576 с. (Hobson L., Hannes M. H., Cole H. 2019. Natural Language Processing in Action Understanding, analyzing, and generating text with Python. Manning Publications, 544 p.)

Alghazali S.M.M., Polshchykov K., Hailan A.M., Svoykina L. 2021. Development of Intelligent Tools for Detecting Resource-intensive Database Queries. International Journal of Advanced Computer Science and Applications, 12 (7): 32–36.

Brown T.B., Mann B., Ryder N., Subbiah M., Kaplan J., Dhariwal P., Neelakantan A., Shyam P., Sastry G., Askell A., Agarwal S., Voss A.H., Krueger G., Henighan T., Child R., Ramesh A., Ziegler D.M., Wu J., Winter C., Hesse C., Chen M., Sigler E., Litwin M., Gray S., Chess B., Clark J., Berner C., McCandlish S., Radford A., Sutskever I., Amodei D. 2020. Language Models are Few-Shot Learners. DOI: https://doi.org/10.48550/arXiv.2005.14165

Chomsky N. 1964. The logical basis of linguistic theory. In: Chomsky N., Lunt H. Proceedings of the Ninth International Congress of Linguistics, Cambridge, Mass., August 27-31, 1962. The Hague, Publ. Mouton and Co: 914–1008.

Devlin J. Chang M.-W., Lee K., Toutanova K. 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. Available at: arXiv:1810.04805 [cs.CL] (accessed: February 10, 2022). DOI: https://doi.org/10.48550/arXiv.1810.04805

Mahdi T.N., Jameel J.Q., Polshchykov K.A., Lazarev S.A., Polshchykov I.K., Kiselev V. 2021. Clusters partition algorithm for a self-organizing map for detecting resource-intensive database inquiries in a geo-ecological monitoring system. Periodicals of Engineering and Natural Sciences, 9 (4): 1138–1145. DOI: http://dx.doi.org/10.21533/pen.v10i1.2584

Mikolov T., Corrado G., Chen K., Dean J. 2013. Efficient Estimation of Word Representations in Vector Space. Available at: arXiv:1301.3781v3 [cs.CL] (accessed: February 10, 2022). DOI: https://doi.org/10.48550/arXiv.1301.3781

Polshchykov K.A., Lazarev S.A., Konstantinov I.S., Polshchykova O.N., Svoikina L.F., Igityan E.V., Balakshin M.S. 2020. Assessing the Efficiency of Robot Communication. Russian Engineering Research, 40 (11): 936–938. DOI: 10.3103/S1068798X20110155

Polshchykov K., Lazarev S., Polshchykova O., Igityan E. 2019. The Algorithm for Decision-Making Supporting on the Selection of Processing Means for Big Arrays of Natural Language Data. Lobachevskii Journal of Mathematics, 40 (11): 1831–1836. DOI: 10.1134/S1995080219110222

Polshchykov K.O., Lazarev S.A., Zdorovtsov A.D. 2017. Neuro-Fuzzy Control of Data Sending in a Mobile Ad Hoc Network. Journal of Fundamental and Applied Sciences, 9 (2S): 1494–1501. DOI: 10.4314/jfas.v9i2s.856

Vaswani A., Shazeer N., Parmar N. Uszkoreit J., Jones L., Gomez A.N., Kaiser L., Polosukhin I. 2017. Attention Is All You Need. Available at: https://arxiv.org/pdf/1706.03762.pdf (accessed: February 10, 2022). DOI: https://doi.org/10.48550/arXiv.1706.03762

Velikanova A.S., Polshchykov K.A., Likhosherstov R.V., Polshchykova A.K. 2021. The use of virtual reality and fuzzy neural network tools to identify the focus on achieving project results. In: Artificial Intelligence and Digital Technologies in Technical Systems II-2021. Journal of Physics: Conference Series, 2060 (1): 012017. DOI: 10.1088/1742-6596/2060/1/012017


Abstract views: 182

Share

Published

2022-10-05

How to Cite

Polshchykova, O. N. (2022). Formation of Computational Linguistics Terminology. Issues in Journalism, Education, Linguistics, 41(3), 590-607. https://doi.org/10.52575/2712-7451-2022-41-3-590-607

Issue

Section

Linguistics